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Published online: 10 May 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006
Communicated by U.-G. Meißner

Abstract. We consider meson-baryon interactions in S-wave with strangeness −1. This is a non-
perturbative sector populated by plenty of resonances interacting in several two-body coupled channels.
We study this sector combining a large set of experimental data. The recent experiments are remarkably
accurate demanding a sound theoretical description to account for all the data. We employ unitary chiral
perturbation theory up to and including O(p2) to accomplish this aim. The spectroscopy of our solutions
is studied within this approach, discussing the rise from the pole content of the two Λ(1405) resonances
and of the Λ(1670), Λ(1800), Σ(1480), Σ(1620) and Σ(1750) ones. We finally argue about our preferred
solution.

PACS. 11.80.-m Relativistic scattering theory – 11.80.Gw Multichannel scattering – 12.39.Fe Chiral
Lagrangians – 13.75.Jz Kaon-baryon interactions

1 Introduction

The study of strangeness−1 meson-baryon dynamics com-
prising the K̄N plus coupled channels has been renewed
both from the theoretical and experimental sides. Experi-
mentally, we have new exciting data like the increasing im-
provement in the precision of measurement of the α line
of kaonic hydrogen accomplished recently by DEAR [1],
and its foreseen better determination, with an expected
error of a few eV, by the DEAR/SIDDHARTA Collabo-
ration [2]. This has established a challenge to theory in
order to match such precision. In this line, ref. [3] pro-
vides an improvement over the traditional Deser formula
for relating scattering at threshold with the spectroscopy
of hadronic atoms [4]. This is achieved by including isospin
breaking corrections to the Deser formula up to and in-
cluding O(α4, (mu−md)α

3), the traditional Deser formula
isO(α3) in this counting, where α is the fine-structure con-
stant and mu, md are the masses of the lightest quarks
u and d. This is a first necessary step since the DEAR
data have a precision of 20%, of the same order as the
corrections worked out in ref. [3]. In addition, one needs
a good scattering amplitude to be implemented in this
equation. The study of strangeness −1 has a long his-
tory [5–12] within K-matrix models, dispersion relations,
meson-exchange models, quark models, cloudy bag mod-
els or large Nc QCD, just to quote a few. However, in
more recent years it has received a lot of attention from
the application of SU(3) baryon Chiral Perturbation The-
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ory (CHPT) to this sector together with a unitarization
procedure, see e.g., [13–21]. Recently, ref. [3] pointed out
the possible inconsistency of the DEAR measurement on
kaonic hydrogen and K−p scattering, since the unitarized
CHPT results, able to reproduce the scattering data, were
not in agreement with DEAR. Later on, the authors of
ref. [20] insisted on this fact based on their own fits, al-
though they only included partially the O(p2) CHPT am-
plitudes [22]. However, the situation changed since ref. [21]
as it was shown that one can obtain fits in unitary CHPT
(UCHPT), including full O(p2) CHPT amplitudes, which
are compatible both with DEAR and with K−p scattering
data. We extend in this work the analysis of ref. [21] by in-
cluding additional experimental data, recently measured
with remarkable precision by the Crystal Ball Collabora-
tion, for the reactions K−p → ηΛ [23] and π0π0Σ0 [24].
The importance of including the latter data in any anal-
ysis of K−p interactions has been singled out in ref. [25].
The study of K−p plus coupled-channel interactions of-
fers, from the theoretical point of view, a very challeng-
ing test ground for chiral effective field theories of QCD
since one has there plenty of experimental data, Goldstone
bosons dynamics and large and explicit SU(3) breaking.
In addition, this sector shows a very rich spectroscopy
with many I = 0, 1 S-wave resonances that will be the
object of our study as well. Apart from that, these in-
teractions are interrelated with many other interesting
areas, as listed in ref. [21], e.g., possible kaon condensa-
tion in neutron-proton stars [26–29], large yields of K− in
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heavy-ions collisions [30,31], kaonic atoms [32] or non-zero
strangeness content of the proton [33,34].

In sect. 2 we outline the theoretical formalism em-
ployed to calculate the strong S-wave amplitudes in cou-
pled channels. In sect. 3 we review the data and fits de-
livered in ref. [21] and present an O(p) fit to the same
data. In the next section we include further data and give
new fits for the prior and new data. These fits are classi-
fied in two families, particularly based on the agreement
or disagreement with respect to the DEAR measurement
of kaonic hydrogen. In sect. 5 we discuss the pole content
and its relation with observed resonances for the most
representative fits. We end with some conclusions giving
reasons to fix our preferred fit.

2 Formalism

CHPT is the effective field theory of strong interactions at
low energies [35–41]. In refs. [42,43] its extension to treat
baryonic fields was pioneered. We concentrate here on pro-
cesses including one baryon, both in the initial and final
state, as well as in the intermediate ones. CHPT applied
to this situation is usually called baryon CHPT. In the
SU(2) sector it has been very successful, see e.g. [37–39],
and references therein. However, due to the relatively large
mass of the strange quark, pure perturbative applications
of SU(3) baryon CHPT suffer from converging problems.
Notice that while in SU(2) one has mπ as an expansion
parameter, for SU(3) one also has mK , with mπ, mK the
masses of pions and kaons, respectively, being the latter
much larger than the former. These facts make that can-
cellations of large contributions at second and third chiral
order often happen with still sizable O(p4) contributions,
see, e.g., refs. [44–46]. Even more, for the case of S-wave
I = 0 K̄N scattering lengths, the CHPT prediction is a
disaster [44]. This is due to the presence of the Λ(1405)-
resonance below and close to the K̄N threshold. The situ-
ation changes once the chiral expansion is implemented
with a resummation of unitarity bubbles [13], showing
that chiral Lagrangians can be used in strangeness −1
meson-baryon interactions reproducing this resonance. In
ref. [17] the resummation of the right-hand cut or unitarity
cut (taking into account unitarity and analyticity) in the
CHPT expansion was systematized to any two-body pro-
cess without spoiling the chiral counting and the CHPT
series up to the considered order. This gives rise to the
known Unitary CHPT or UCHPT. This work originated in
turn from a series of previous works [14,47,48,15,16,49],
where similar techniques were already employed in meson-
meson and meson-baryon production and scattering.

Meson-baryon interactions are described to lowest or-
der in the CHPT expansion, i.e. at O(p), by the chiral
Lagrangian

L1 = 〈iB̄γµ[Dµ, B]〉 −m0〈B̄B〉

+
D

2
〈B̄γµγ5{uµ, B}〉+

F

2
〈B̄γµγ5[uµ, B]〉, (2.1)

where m0 stands for the octet baryon mass in the SU(3)
chiral limit. The trace 〈· · · 〉 runs over flavor indices and
the axial-vector couplings are constrained by F + D =
gA = 1.26. We use D = 0.80 and F = 0.46 extracted
from hyperon decays [50]. Furthermore, uµ = iu†(∂µU)u†,

U(Φ) = u(Φ)2 = exp(i
√
2Φ/f), with f the pion decay con-

stant in the SU(3) chiral limit, and the covariant deriva-
tive Dµ = ∂µ+Γµ with Γµ = [u†, ∂µu]/2. The 3× 3 flavor
matrices Φ and B collect the lightest octets of pseudo-
scalar mesons (π,K, η) and baryons (N,Σ,Λ,Ξ), respec-
tively:
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. (2.2)

At next-to-leading order (NLO) in CHPT, i.e. O(p2),
the meson-baryon interactions are described by the La-
grangian

L2 = b0〈B̄B〉〈χ+〉+ bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉
+b1〈B̄[uµ, [u

µ, B]]〉+ b2〈B̄{uµ, {uµ, B}}〉
+b3〈B̄{uµ, [uµ, B]}〉+ b4〈B̄B〉〈uµuµ〉+ · · · . (2.3)

Here ellipses denote terms that do not produce new
independent contributions to the S-wave meson-baryon
scattering at O(p2). In addition, χ+ = u†χu† + uχ†u,
χ = 2B0Mq, Mq is the diagonal quark mass matrix
(mu,md,ms), and B0f

2 = −〈0|q̄q|0〉, the quark conden-
sate in the SU(3) chiral limit. The bi couplings present in
eq. (2.3) are fitted to data, with the subscript i referring
both to B, D, F as well as to 1, 2, 3, 4. Nevertheless, in
the fitting process we will impose three relations to be sat-
isfied between the bi, hence decreasing to the same extent
the number of free parameters.

From the Lagrangians of eqs. (2.1) and (2.3) we calcu-
late the O(p) and O(p2) meson-baryon amplitudes. The
O(p) expressions in the canonical basis for the baryons1

are given in ref. [17]. The O(p2) expressions are given in
ref. [51]. The calculated chiral amplitudes are then pro-
jected in the S-wave according to

Tji(W ) =
1

4π

∫

dΩ Tji(W,Ω;σ, σ), (2.4)

where Tij(W,Ω;σ, σ) is a generic meson-baryon scattering
amplitude of channel i into channel j depending on W ,
the total energy in the center-of-mass frame (CM), angles,
Ω, and the initial and final spin of the baryons, σ, with
σ = ±1/2. The result of eq. (2.4) does not depend on the
particular sign for σ.

1 The canonical basis is given by the fields Ba, a = 1, . . . , 8,
such that B =

∑

8

a=1
Baλa/

√
2, with λa the Gell-Mann matri-

ces and B the matrix given in eq. (2.2).
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We have ten meson-baryon coupled channels with
strangeness −1 (or zero hypercharge): π0Λ, π0Σ0, π−Σ+,
π+Σ−, K−p, K̄0n, ηΛ, ηΣ0, K0Ξ0 and K+Ξ−, in in-
creasing threshold energy order. Each channel is labelled
by its position (1 to 10) in the previous list. We denote by

T
(1)
χ ij the CHPT amplitudes at O(p) and by T

(2)
χ ij those

at O(p2), with the subscripts ij indicating the scattering
process i → j, so that a CHPT amplitude up to and in-

cluding O(p2) is given by T
(1)
χ ij + T

(2)
χ ij . We employ these

perturbative amplitudes as input for UCHPT at NLO.
The scheme is the following [17]. Two-body partial-wave
amplitudes can be written in matrix notation as

T (W ) = [I + T (W ) · g(s)]−1 · T (W ), (2.5)

with s =W 2, the Mandelstam s variable. The matrix ele-
ments of T (W ) are those of eq. (2.4). Equation (2.5) was
derived in [17] by employing a coupled-channel dispersion
relation for the inverse of a partial wave Tij(W ). The uni-
tarity or right-hand cut is taken into account easily by the
discontinuity of T−1(W )|ij for W above the ith threshold,
which is given by the phase space factor −δijqi/8πW , with
qi the CM three-momentum of channel i. This factor is
given by the imaginary part of the diagonal matrix g(s),
where g(s)i is the ith channel unitarity bubble:

g(s)i =
1

(4π)2

{

ai(µ) + log
M2
i

µ2
− m2

i −M2
i + s

2s
log

M2
i

m2
i

+
qi
W

[

log(s−∆+ 2Wqi) + log(s+∆+ 2Wqi)

− log(−s+∆+ 2Wqi)− log(−s−∆+ 2Wqi)

]

}

, (2.6)

here ∆ = m2
i −M2

i and mi, Mi are the baryon and meson
masses for channel i, respectively. In the following, µ will
be fixed to the value of the ρmass, µ =Mp ' 0.77GeV. In
other terms, the g(s)i satisfy a once subtracted dispersion
relation,

g(s)i = g(s0)−
s− s0
π

∫ ∞

sth,i

ds′
qi

8πW ′
1

(s′ − s)(s′ − s0)
,

(2.7)
whose explicit expression is given above, eq. (2.6). On the
other hand, sth,i is the value of s for the threshold of
channel i. The resummation of the right-hand cut is justi-
fied in order to resum the chain of unitarity bubbles that
is enhanced by the large masses of kaons and baryons.
This spoils the straightforward use of the chiral series [43,
22]. The dispersion relation above is once subtracted be-
cause phase space tends to a constant for s → ∞. This
is why a subtraction constant ai(µ) for each channel ap-
pears in the g(s)i-function. In our problem, isospin sym-
metry reduces the number of subtraction constants from
10 to 6 [18], a1, a2 = a3 = a4, a5 = a6, a7, a8 and
a9 = a10. On the other hand, we keep the physical masses
of mesons and baryons in the calculation of g(s)i, which
then produces pronounced cusp effects. The interaction

PSfrag replacements

O(p)
Seagull

O(p)
Direct

O(p)
Crossed

O(p2)
Contact
terms

Fig. 1. Diagrams for the calculation of the baryon CHPT scat-
tering amplitudes up to and including O(p2). The first three
diagrams are O(p) while the latest is O(p2).

kernel T (W ) (T = T1 + T2 + · · · , where subscripts indi-
cate the chiral order), is fixed by matching (2.5) with the
baryon CHPT amplitudes Tχ order by order, as clearly

explained in [17]. At leading order, O(p), T1 = T
(1)
χ while

at NLO, O(p2), T2 = T
(2)
χ . The matching can be done to

any arbitrary order and for O(p3) or higher Tn 6= T
(n)
χ .

Explicit expressions for T
(1)
χ +T

(2)
χ , and hence for T1+T2,

are given in ref. [51]. The T -matrix, up to and including
O(p2), incorporates local and pole terms as well as crossed
channel dynamics contributions in the dispersion relation
for T−1, see fig. 1.

3 Data and fits of ref. [21]

We now discuss the data employed in ref. [21] to obtain its
fits A+

4 and B+
4 , since we are going to use the same data

in our own fits. The latter include the σ(K−p → K−p)
elastic cross-section [52–55], the σ(K−p → K̄0n) charge
exchange one [52,53,55–57], and several hyperon produc-
tion reactions, σ(K−p → π+Σ−) [52–54], σ(K−p →
π−Σ+) [53–55], σ(K−p → π0Σ0) [53] and σ(K−p →
π0Λ) [53]. In our normalization the corresponding cross-
section, keeping only the S-wave, is given by

σ(K−p→MB) =
1

16πs

p′

p
|TK−p→MB |2, (3.1)

where MB denotes the final meson-baryon system, p′ the
final CM three-momentum and p the initial one.

In addition, we also fit the precisely measured ratios
at the K−p threshold [58,59]:

γ =
σ(K−p→ π+Σ−)

σ(K−p→ π−Σ+)
= 2.36± 0.04,

Rc =
σ(K−p→charged particles)

σ(K−p→all)
=0.664±0.011, (3.2)

Rn =
σ(K−p→ π0Λ)

σ(K−p→ all neutral states)
= 0.189± 0.015.

The first two ratios, which are Coulomb corrected, are
measured with 1.7% precision, which is of the same order
as the expected isospin violations. Indeed, all the other
observables we fit have uncertainties larger than 5%.

Since we are just considering the S-wave partial waves,
we only include in the fits those data points for the
several K−p cross-sections with laboratory frame K−
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three-momentum pK ≤ 0.2GeV. This also enhances the
sensitivity to the lowest-energy region in which we are par-
ticularly interested. We also include in the fits the π±Σ∓

event distributions from the chain of reactions K−p →
Σ+(1660)π−, Σ+(1660) → π+Σπ [60]. The Σ+π− and
Σ−π+ have I = 1 Clebsch-Gordan coefficients opposed
in sign while both have the same I = 0 Clebsch-Gordan
coefficient. Since this process is dominated by the Λ(1405)-
resonance, which afterwards decays into Σπ, we want to
remove as much as possible the I = 1 contamination. In-
deed, one can observe small differences in the data [60] be-
tween the event distributions for Σ±π∓ due to this I = 1
effect, that indeed is enhanced by the presence of I = 1
resonances close to the Λ(1405) energy region, as reported
in [17,18] or within the entry Σ(1480) of the PDG [61],
qualified there as bumps. See also ref. [62] for a possible
recent observation of this resonance. No I = 1 resonance
around the K̄N threshold is reported in refs. [19,63,64].
We shall present our own results on that in sect. 5, dedi-
cated to spectroscopy. In order to remove the interference
with the I = 1 contribution we take the average between
the Σ±π∓ event distributions. For the calculation we fol-
low [17], where a generic L = I = 0 source is taken for
the generation of the final Σ±π∓ particles, L is the angu-
lar momentum. Final-state interactions are taken into ac-
count in the very same way as for the strong meson-baryon
scattering amplitudes. In this case, the “production” ver-
tices for the ith channel are the Tαi matrix elements, from
the “source”≡ αth channel. Afterwards, final-state inter-
actions give rise to the factor [I + K · g]−1. Hence, the
elementary production vertices, Ri, because of final-state
interactions, change to R → [I + T ] · R = F , with Fi
the transition amplitude to the ith channel. In order to
simplify matters, as done as well in ref. [17], we only con-
sider Ri 6= 0 for the K̄N and πΣ channels, as they are
the only channels with I = 0 component that open in the
considered energy region around the Λ(1405). Any other
channels with I = 0 component are much higher in energy.
Hence, Ri = (0, r, r, r, r′, r′, 0, 0, 0, 0). The final expression
considered is then

dNπΣ

dW
=

∣

∣

∣

∣

r(D32 +D33 +D34) + r′(D35 +D36)

∣

∣

∣

∣

2

pπ−Σ+ ,

(3.3)
with D = [I+T ·g]−1. In this way, the I = 0 component is
the only one contributing. We have taken in eq. (3.3) the
π−Σ+ channel to evaluate the three-momentum pπ−Σ+ .
We could have also taken the π+Σ−, being the numerical
effects negligible. The parameters r and r′ are fitted to
the average of the π±Σ∓ event distribution data.

The number of data points included in each fit, without
the data for the energy shift and width of kaonic hydrogen,
is 97. Unless the opposite is stated, we also include in the
fits the DEAR measurement of the shift and width of the
1s kaonic hydrogen energy level [1],

∆E = 193± 37(stat)± 6(syst.) eV,

Γ = 249± 111(stat.)± 39(syst.) eV, (3.4)

which is around a factor two more precise than the
KEK [65] previous measurement, ∆E = 323± 63± 11 eV

and Γ = 407 ± 208 ± 100 eV. To calculate the shift and
width of the 1s kaonic hydrogen state we use the results
of [3] incorporating isospin breaking corrections up to and
including O(α4, (md−mu)α

3). The final expression taken
from ref. [3] is

T
(0)
KN = 4π

(

1 +
MK+

mp

)

(a0 + a1)/2 + q0a0a1

1 + q0(a0 + a1)/2
,

∆E− i

2
Γ = − α3µ3

c

2πMK+

T
(0)
KN

{

1−αµcs1(α)
4πMK+

T
(0)
KN

}

, (3.5)

where, as suggested in that reference, we have taken for
practical purposes δTKN , δ

vac
1 = 0. The notation followed

is that of ref. [3]. We have displayed these formulas in
order to show how the strong K̄N scattering lengths in
the isospin limit, a0 and a1 for I = 0, 1, respectively, en-
ter in eq. (3.5). The definition of the isospin limit is the
same as in ref. [3], taking for the mass of the K, π and
nucleon multiplets that of the positively charged particle.
We compare the results obtained from eq. (3.5) with those
from the Deser formula [4], directly given in terms of the
K−p scattering length, aK−p, ∆E−i Γ/2 = −2α3µ2

caK−p,
without considering the isospin limit. Within the uncer-
tainties given in ref. [3], one can use 4π(1+MK+/mp)aK−p

instead of T
(0)
KN in eq. (3.5). We have checked that for all

our fits the resulting ∆E and Γ are very close to those
obtained directly employing eq. (3.5). Hence we do not
elaborate more on this point.

We further constrain our fits by computing at O(p2)
in baryon SU(3) CHPT several πN observables with the
values of the low-energy constants involved in the fit. Uni-
tarity corrections in the πN sector are not as large as
in the S = −1 sector, e.g., there is no something like a
Λ(1405) resonance close to threshold, and hence a cal-
culation within pure SU(3) baryon CHPT is more reli-
able for this sector. Thus, we calculate at O(p2), a+

0+, the
isospin-even pion-nucleon S-wave scattering length, σπN ,
the pion-nucleon σ term, and m0 from the value of the
proton mass mp,

σπN =−2m2
π(2b0 + bD + bF ),

a+
0+=−

m4
π

2πf2

[

(2b0+bD+bF )−(b1+b2+b3+2b4)+
g2
A

8mp

]

,

mp=m0−4m2
K(b0 + bD − bF )− 2m2

π(b0 + 2bF ). (3.6)

We do not consider the isospin-odd πN scattering
length a−0+ since up to O(p2) it is independent of the low-
energy constants bi [66]. The σπN term receives sizable
higher-order corrections from the mesonic cloud which are
expected to be positive and around 10MeV [67]. Since
we evaluate it just at O(p2), we enforce σπN = 20, 30
or 40MeV in the fits (σπN = 45 ± 8MeV [68]). For the
same reason, m0 = 0.7 or 0.8GeV was enforced in ref. [21]
(m0 = 0.77 ± 0.11GeV from ref. [45] or 0.71 . m0 .
1.07GeV [69]). In the new fits to be discussed in the next
section, we usem0 = 0.9±0.2, as suggested by ref. [69]. We
also include the value a+

0+ = −(1± 1) · 10−2m−1
π in the fit

procedure. This value results after considering its experi-
mental measurement [70], a+

0+ = −(0.25±0.49)·10−2 m−1
π ,
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Fig. 2. The solid lines correspond to the fit A+

4 , the dashed ones to B+

4 and the dash-dotted lines to the O(p) fit given in
table 1. The data employed in the fit is that of sect. 3. The experimental references for the first six panels are: squares [52],
diamonds [53], upwards triangles [54], circles [55], stars [56] and downwards triangles [57]. The data in the seventh panel, thick
solid line, are from ref. [60]. The circles and diamonds in the eighth panel are from refs. [23,71], in order. The thick solid line
in the ninth panel is the experimental data [24]. While the data of the tenth panel correspond to ref. [24].

and the theoretical expectation of positive O(p3) correc-
tions around +1 · 10−2m−1

π from unitarity [66]. Thus, the
inclusion of eq. (3.6) implies three relations between the
bi that basically reduce by three2 the number of fitted pa-

2 Here “basically” is because a+
0+

andm0 are given with some
error, while σπN is fixed.

rameters shown in tables 1, 3 and 5. It is worth stressing
that for all the fits we minimize strictly the χ2, that is,
each data point is weighted according to its experimental
error. We do not include the data from ref. [55] in the
σ(K−p→ π−Σ+) cross-section since they are incompati-
ble with all the other data.
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Table 1. Resulting values for the parameters of the fits A+

4 ,
third column, and B+

4 , fourth column. The O(p) fit is given
in the fifth column. The fits A+

4 and B+

4 are from ref. [21].
In the last column the asterisks mean that the corresponding
parameters are fixed to 0 since it is an O(p) calculation.

Units A+

4 B+

4 O(p)
MeV f 79.8 89.2 88.0

GeV−1 b0 −0.855 −0.318 0∗

GeV−1 bD +0.715 −0.101 0∗

GeV−1 bF −0.036 −0.314 0∗

GeV−1 b1 +0.605 −0.193 0∗

GeV−1 b2 +1.075 −0.275 0∗

GeV−1 b3 −0.189 −0.153 0∗

GeV−1 b4 −1.249 −0.277 0∗

a1 −1.155 −1.570 −0.472
a2 −0.383 −2.062 −1.572
a5 −1.304 −2.605 −1.266
a7 −1.519 −1.568 −1.853
a8 −1.212 −2.064 −1.210
a9 −0.145 −0.886 +3.337

In fig. 2 we show the scattering data and the πΣ event
distributions in the first seven panels, from left to right
and top to bottom. The solid and dashed curves, corre-
spond to the A+

4 and B+
4 fits, respectively. They reproduce

well the data included in the fits of ref. [21] and discussed
in this section. The last three panels in the same figure
correspond to other data not considered in the present
fits nor in ref. [21]. In the eighth panel we show the total
cross-section σ(K−p → ηΛ). The solid points come from
ref. [23] while the diamonds are much older [71]. The π0Σ0

event distribution and the total cross section for the re-
action K−p → π0π0Σ0, measured in [24], are displayed,
respectively, in the ninth and tenth panels. The data in
the last three panels will be presented and discussed fur-
ther in the next section. It is clear from the figure that the
A+

4 and B+
4 fits do not reproduce adequately the data in

the last three panels. In fig. 2, we also show by the dash-
dotted lines the O(p) fit to the same data. As we see, this
fit, with 4 free parameters less than the others3, is able to
reproduce the scattering data but fails as well in the repro-
duction of σ(K−p→ ηΛ), although its disagreement with
the data from the reaction K−p→ π0π0Σ0 [24] is neatly
smaller than for the fits A+

4 and B+
4 . In table 1 we give

the values of the fitted parameters. We show in table 2 the
resulting values for the ratios of eq. (3.2) and observe that
for all the fits there is agreement with experiment for γ and
Rn within the small errors given. For Rc, the fits B+

4 and
O(p) agree within the experimental error, while A+

4 agrees

3 We recall that in the O(p2) fits we also consider m0, σπN
and a+

0+
, directly given by eqs. (3.6) in terms of the low-

energy constants bi. In this way, although there are 7 low-
energy constants only four are really kept as free parameters
in the O(p2) fits. This statement, however, is only approxi-
mate because neitherm0 nor a

+

0+
are exactly sticked to a value,

m0 = 0.9± 0.2GeV and a+
0+

= −(1± 1)10−2.

with the experimental value at the level of 5%, which is
equally satisfactory since we do not intend at this stage to
arrive at such precision in the description of strong inter-
actions in this sector, where even isospin breaking correc-
tions should be systematically included. We also show in
the same table the kaonic hydrogen data included in the
fit, as well as other magnitudes as explained in the table
caption. Only the A+

4 fit is in agreement with the shift and
width of kaonic hydrogen from DEAR [1]. The fits B+

4 and
O(p) are in agreement with KEK [65] but disagrees with
DEAR [1]. We also show the calculated energy shift and
width of kaonic hydrogen from the Deser formula. The
differences with respect to the results from the more elab-
orated eq. (3.5) are huge for Γ in the fits B+

4 and O(p) and
by far much smaller, a correction of just a few percent, in
the fit A+

4 . For the O(p) fit the value for a9 is quite large,
although this parameter turns out with very large errors
as given by the minimizing subroutine [72]. Indeed, its up-
per error is much larger than the value of the parameter
itself. Hence one concludes that this parameter is left un-
determined by the O(p) fit. We should also remark that all
the parameters in table 1 are of natural size. The bi are of
order GeV−1 and the |ai| are around 1. This is the natural
size for the ai since from the value of the imaginary part of
g(s)i above threshold, −qi/8πW , multiplying it by 16π2,
the prefactor in eq. (2.6), one has −qi/2πW . Taking forW
the mass of a nucleon, mN , the ratio is then the quotient
of qi over ' 150 MeV, which is typically a quantity of or-
der 1. Furthermore, from the unitarity corrections to the
chiral series induced by g(s), which start at O(p3), one can
derive the scale ΛU ' 16π2f2/2mN |ai|. Again this scale
is of natural size, around the mass of the ρ, for |ai| = 1.
However, for larger values of |ai| it can be quite small,
e.g., of the order of the difference between the masses of
the nucleon and ∆(1232). Regarding the precise values for
b0, bD and bF we can compare our values in table 1 with
the determination based on resonance saturation and re-
production of the masses of the lightest baryon octet and
σπN from ref. [45]. The authors of ref. [45] conclude that
b0 ' −0.61, bD ' 0.08 and bF ' −0.32 in units of GeV−1.
From a pure O(p2) analysis of baryon masses and σπN
one has, in the same units, bD = 0.064, bF = −0.209 and
b0 = −0.518 or −0.807, depending on whether the value
for σπN is taken from ref. [68] or from ref. [34], respec-
tively. These values look somewhat closer to those of the
fit B+

4 than to the values of the fit A+
4 . However, the com-

parison is not straightforward since we employ the O(p2)
couplings in UCHPT, which resums large contributions
in this sector, so that there is no reason why the values
should be the same as in CHPT. It is remarkable that the
value for b3 is very similar both in the fits A+

4 and B+
4 . In-

deed, from ref. [45] one also has b1 = −0.004, b2 = +0.018,
b3 = −0.187 and b4 = −0.109, hence the value for b3 is
quite similar also to those in table 1. Finally, in ref. [13]
a value of around −0.15GeV−1 was given as well and in
many of the fits of ref. [20] values around −0.2GeV−1

are reported. In the fits that we present later, b3 mostly
appear between −0.2 and −0.3GeV−1.
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Table 2. Values for the ratios at threshold of eq. (3.2), energy shift (∆E) and width (Γ ) of the ground state of the kaonic
hydrogen, both using eq. (3.5) and the Deser formula, the latter indicated by the subscript D. We also give the K−p S-wave
scattering length, aK−p, I = 0 and 1 K̄N scattering lengths in the isospin limit, a0 and a1, respectively, the difference between

the P - and S-wave πΛ phase shifts at the Ξ− mass, δπΛ(Ξ), the lightest baryon mass in the chiral limit, m0, the isospin even
πN scattering length, a+0+, and the enforced σπN = 40∗MeV for the O(p2) fits.

A+

4 B+

4 O(p)
γ 2.36 2.36 2.35

Rc 0.628 0.655 0.667

Rn 0.172 0.195 0.205

∆E (eV) 201 403 390

Γ (eV) 338 477 525

∆ED (eV) 209 416 394

ΓD (eV) 346 662 716

aK−p (fm) −0.51 + i 0.42 −1.01 + i 0.80 −0.96 + i 0.87

a0 (fm) −1.23 + i 0.45 −1.63 + i 0.81 −1.55 + i 0.87

a1 (fm) 0.98 + i 0.35 −0.01 + i 0.54 −0.03 + i 0.65

δπΛ(Ξ) (◦) 2.5 0.2 −1.9
m0 (GeV) 0.8∗ 0.8∗ . . .

a+0+ (10−2 ·M−1
π ) −1.2 −1.7 . . .

σπN (MeV) 40∗ 40∗ . . .

The discrepancy commented of the A+
4 and B+

4 fits
with the data not included in ref. [21], corresponding to
the last three panels of fig. 2, leads us to consider new fits
that include these new data from the beginning.

4 New fits with additional recent data

In addition to the data set described in sect. 3, we now
include in the fits the following data, already shown in the
last three panels of fig. 2:

i) The σ(K−p → ηΛ) cross-section was measured ac-
curately in ref. [23] from threshold up to around
pK = 770MeV (

√
s = 1.69GeV), with pK the kaon

three-momentum in the laboratory frame. These are
17 data points with small error bars as shown by
the circles in the eighth panel of the result figures,
namely, figs. 2, 4, 5. We also consider older data on
this reaction [71] from pK = 728 up to 934MeV
(
√
s = 1.76GeV). They are much less precise than

the previous data and up to pK = 0.85GeV are shown
in the eighth panel of the same figures. Both data sets
include a total of 29 new points.

ii) Data from the reaction K−p→ Σ0π0π0 recently mea-
sured in ref. [24]. These data comprise the π0Σ0 event
distribution, shown in the ninth panel of the result
figures by the thick solid line, and measurements of
the associated total cross-section, given by the circles
in the tenth panel of the same figures. The measure-
ment of the cross-section is quite accurate, as one can
see from these figures, with pK from 0.5GeV up to
0.75GeV. The error bars given are calculated from
ref. [24] by adding in quadrature the statistical errors
(explicitly given in the paper) and a systematic error
of 10% (the upper bound estimated in this reference

for this source of error). These data constitute 18 de-
manding new points4.

iii) Finally, we also include the recently measured differ-
ence between the P - and S-wave πΛ phase shifts at the
Ξ− mass, from the determination of the Ξ− → Λπ−

decay parameters. The results are δP − δS = (4.6 ±
1.4 ± 1.2)◦ [73] and (3.2 ± 5.3 ± 0.7)◦ [74]. Neglect-
ing the tiny P -wave phase shift [75], this quantity just
corresponds to −δS . As already given in ref. [21], we
obtain for this quantity 2.5◦ for the fit A+

4 and 0.2◦ for
the fit B+

4 . For the O(p) fit one has −1.9◦, see table 2.
Hence, the fit A+

4 is the only one in agreement with the
measurement at the level of one σ. In the following, we
denote by δπΛ(Ξ) this phase shift difference.

Thus, in total we have 153 “scattering” data points
while in ref. [21] the number of “scattering” data points,
97, was significantly smaller.

We follow a similar strategy as in the fits of [21] and
then consider fits constrained to give σπN = 20, 30 and
40MeV. On the other hand, m0 = 0.9± 0.2 is included in
the fits, where the range of values is taken from ref. [69],
and is compatible as well with that of ref. [45]. Other works
on baryon masses from baryon CHPT, in some or other
variant, are [76–79].

The reaction K−p→ ηΛ, accurately measured by the
Crystal Ball Collaboration [23], was also considered in
refs. [80,63,81], where it was assumed to proceed in S-
wave. This assumption is well suited since the data from
ref. [23] is close to threshold and hence the S-wave should
dominate, this is also indicated by the angular distribu-
tions [23]. We follow here this assumption as well and thus
the strong K−p→ ηΛ amplitude will be taken in S-wave.

4 I warmly acknowledge E. Oset for having stressed to me
the importance of these new data.
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Fig. 3. Production process for the K−p→ π0π0Σ0 reaction.

According to our normalization we have

σ(K−p→ ηΛ) =
1

16π s

p′

p

∣

∣TK−p→ηΛ

∣

∣

2
, (4.1)

as in eq. (3.1), with p′ the CM three-momentum of the ηΛ
system and p that of the initial K−p state.

For the calculation of the Σ0π0 event distribution and
the total cross-section of the reaction K−p→ π0π0Σ0, we
follow the scheme of ref. [25], although we use fully rela-
tivistic amplitudes. In ref. [25] several production mech-
anisms for the final π0π0Σ0 state are included and dis-
cussed in connection to the related process π−p→ K0πΣ,
studied in ref. [82]. Interestingly, all of them are negligible
compared with the diagram shown in fig. 3. The thick dot
at the right of the figure means that the full K−p→ π0Σ0

S-wave is used. Here we are assuming that the process is
dominated by the S-wave meson-baryon amplitude, which
is justified since we are close to the threshold of the reac-
tion, see the last panel of figs. 2, 4 or 5. This diagram is
so much enhanced compared with other possible ones [25]
due to the almost on-shell character of the intermediate
proton. As said above, we have recalculated this diagram
in a fully Lorentz covariant way, as also done with the in-
teraction kernel for our S-wave amplitudes. Numerically
these relativistic corrections do not affect appreciably the
results as compared with the non-relativistic limit taken in
ref. [25]. Had the emitted meson been a kaon, things would
have been different, since then large factors of MK/mp

would have appeared. The finding of ref. [25], concerning
the dominance of the diagram of fig. 3 compared with any
other mechanism considered, makes us confident about
the reliability of the approach and, hence, we include this
reaction in our data set.

Our final expression for the reaction K−p → π0π0Σ0

is

tβα =
D + F

2f

iApAQ
(p− q1)2 −m2

p

χβ

×
{

~p~σ

[

q01
(Ep +mp)

+
q01

EQ +mp

+
~q 2

1 − 2~p ~q1
(Ep +mp)(EQ +mp)

]

−~q1~σ
[

1 +
q01

EQ +mp

− ~p 2

(Ep +mp)(EQ +mp)

]

×TK−p→π0Σ0(W13) + (q1 ↔ q2)

}

χα. (4.2)

In the previous equation, Q = p − q1 and p, q1 and
q2 are the four-momenta of the incoming proton and out-

Table 3. Fits, presented in sect. 4.1, that agree with the DEAR
data, eq. (3.4). The σπN value enforced in the fits is given in
the first row.

Units σπN 20∗ 30∗ 40∗

MeV
MeV f 75.2 71.8 67.8
GeV−1 b0 −0.615 −0.750 −0.884
GeV−1 bD +0.818 +0.848 +0.873
GeV−1 bF −0.114 −0.130 −0.138
GeV−1 b1 +0.660 +0.670 +0.676
GeV−1 b2 +1.144 +1.169 +1.189
GeV−1 b3 −0.297 −0.316 −0.315
GeV−1 b4 −1.048 −1.181 −1.307

a1 −1.786 −1.591 −1.413
a2 −0.519 −0.454 −0.386
a5 −1.185 −1.170 −1.156
a7 −5.251 −5.209 −5.123
a8 −1.316 −1.310 −1.308
a9 −1.186 −1.132 −1.050

going pions, respectively, and W13 is CM energy of the
Σ0 and the second pion. The subscripts α and β refer
to the spins of the proton and Σ0, in order. The χi are
Pauli spinors, Ap =

√

mp + Ep and AQ =
√

mp + EQ,
with Eq the proton energy for three-momentum ~q, Eq =
√

m2
p + ~q 2. The exchange (q1 ↔ q2) in the end of eq. (4.2)

guarantees the indistinguishableness of the two emitted
neutral pions. This is the source of a major background
for the Λ(1405)-resonance shape in the event distribution
that makes the Λ(1405)-resonance to appear wider. Taking
into account the phase space for the three final particles
we have the following expression for the cross-section:

σ(K−p→ π0π0Σ0) =
1/2

1024 s π5

×
∫

d cos θp′ dφp′ dφ3 dm
2
23 dm

2
12

1

2

2
∑

α,β=1

|tαβ |2, (4.3)

where p′ is the four-momentum of the Σ0, φ3 the az-
imuthal angle of the second pion, m12 the invariant mass
of the Σ0 and the first π0, while m23 is that of the two
pions. The symmetry factor 1/2 for the calculation of the
total cross-sections, due to the identical neutral pions, is
explicitly shown. In the calculation of the event distri-
bution it should be removed, but since the latter is not
normalized we show it for both calculations. Incidentally,
we also mention that the S-wave amplitude appearing
in eq. (4.2) is evaluated in the K−-(intermediate p) CM
frame, which is not the CM of the whole process, in which
eq. (4.3) is expressed. We have worked out the correspond-
ing Wigner rotation matrices to calculate the scattering
amplitudes in the global CM frame from the S-wave in
the K−-(intermediate p) CM frame. But, since their nu-
merical effects are negligible, we refrain from including
them and giving further details about their calculation.
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Fig. 4. The solid lines correspond to the σ = 40∗MeV fit, the dashed lines to the 30∗MeV fit, and the dash-dotted curves to
the 20∗MeV one of table 3. The different lines can be barely distinguished. For experimental references see the caption of fig. 2.

4.1 New A-type fits

We first discuss those fits that reproduce the DEAR ac-
curate measurement, eq. (3.4), of the width and shift
of kaonic hydrogen, together with the rest of data. We
show in fig. 4 the reproduction of the scattering data for
these new fits, that include the additional data discussed
in this section. We distinguish the fits according to the
enforced σπN value introduced in the fit and calculated
from eq. (3.6). These values, in MeV, are 40∗ (solid), 30∗

(dashed) and 20∗ (dash-dotted lines). These fits, once the
new data is included, originate from the A+

4 one, and many
fitted values of the parameters, shown in table 3, are quite
similar to those of A+

4 given in table 1. The main differ-
ence is the value for a7 concerning the ηΛ channel, that
is much smaller now than it was in table 1. The value for
f is also a few MeV smaller now than for A+

4 . We have
also tested another fit with σπN = 45 ± 18MeV, taking
for σπN the central value from ref. [68] and adding lin-
early the error given in this reference and the expected
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Fig. 5. The solid lines correspond to the σπN = 40∗MeV fit, the dashes lines to the 30∗MeV fit, the dash-dotted curves to the
20∗MeV one and the dotted lines to the O(p) fit of table 5.

uncertainties from higher orders [67]. Nonetheless, the re-
sulting fit is somehow intermediate between the fits with
σπN = 20∗ and 30∗ and we do not consider it any further.
We obtain a good reproduction of the scattering data as
shown in fig. 4. Although the different lines in this figure
can be barely distinguishable, we show the different fits
separately in table 3 to illustrate how different fits can
give rather similar results. The main differences in the
outputs, as shown in table 4, come from the values of m0

and, of course, of the enforced σπN . In addition, we also

give in this table several other observables as in table 2.
For the ratio Rc, the values given in table 3 agree with the
experiment, eq. (3.2), within 5%, like in the case of A+

4 .
It is worth stressing the perfect agreement with DEAR,
concerning the energy shift and width for kaonic hydro-
gen, for all the fits of table 3, while, at the same time, all
the scattering data shown in fig. 4, plus δπΛ(Ξ), m0, σπN
and a+

0+, are reproduced too.

The aK−p scattering lengths shown in the previous ta-

ble are similar to those of the fit A+
4 in table 2. Of course,
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Table 4. Fits, given in table 3, that agree with the the DEAR data, eq. (3.4). The σπN value enforced in the fits is given in
the first row. The notation is like in table 2.

σπN 20∗ 30∗ 40∗

γ 2.36 2.36 2.37
Rc 0.629 0.628 0.628
Rn 0.168 0.171 0.173

∆E (eV) 194 192 192
Γ (eV) 324 302 270

∆ED (eV) 204 204 207
ΓD (eV) 361 338 305
aK−p (fm) −0.49 + i 0.44 −0.49 + i 0.41 −0.50 + i 0.37
a0 (fm) −1.07 + i 0.53 −1.04 + i 0.50 −1.02 + i 0.45
a1 (fm) 0.44 + i 0.15 0.40 + i 0.15 0.33 + i 0.14

δπΛ(Ξ) (◦) 3.4 4.5 5.7
m0 (GeV) 1.2 1.1 1.0

a+0+ (10−2 ·M−1
π ) −2.0 −2.2 −2.2

they are much smaller in absolute value than those of fits
B+

4 and O(p). This is related to the fact that the new fits,
as A+

4 , reproduce the DEAR data which, by the Deser for-
mula, requires a much smaller scattering length than those
of the fits B+

4 and O(p). Let us recall that the A+
4 fit of

ref. [21] was the first chiral fit to be in agreement with the
recent and accurate kaonic hydrogen data from ref. [1] and
the scattering data of sect. 3. Nonetheless, since the fits
in table 3 are also able to provide a good reproduction of
the new precise data from refs. [23,24], they are preferred
by us over the A+

4 one.
It is remarkable as well the agreement with the mea-

surement of δπΛ(Ξ) from refs. [73,74]. The values in
table 4 are considerably larger than those obtained in
ref. [83] from an O(p) analysis using UCHPT, where the
range −1.1◦ . δπΛ . 0◦ was determined from an analysis
of the scattering data of sect. 3. Hence we see that the ef-
fect of the higher orders in the kernel T are quite relevant
for a precise determination of this quantity.

4.2 New B-type fits

Now, we report about other fits to the whole set of data
that originate from the B+

4 fit of ref. [21]. We also include
here an O(p) fit to all the data of this section, except
for the magnitudes in eq. (3.6), as they are defined in
terms of the O(p2) couplings. Following the same scheme
of presentation as in the prior section, we enforce in the
O(p2) fits that σπN = 20∗, 30∗ or 40∗MeV. The fitted
parameters are given in table 5, while the results are shown
in table 6 and in fig. 5 by the solid (40∗), dashed (30∗) and
dash-dotted lines (20∗). The new O(p) fit is given in the
last column of table 5 and its results are given in the last
column of table 6 and in fig. 5 by the dotted lines.

We observe that all the fits in table 5 reproduce very
well the scattering data, except for the O(p) fit which
badly fails in the reproduction of σ(K−p → ηΛ), shown
in the eighth panel. However, all these fits strongly dis-
agree with the DEAR measurement, eq. (3.4), of the en-
ergy shift and width of the kaonic hydrogen, particularly
for the former. It is also worth noticing that for the fits

Table 5. Fits, discussed in sect. 4.2, that do not agree with
the DEAR data, eq. (3.4). The enforced σπN value in the fit is
shown in the first line.

Units σπN 20∗ 30∗ 40∗ O(p)
MeV

MeV f 95.8 113.2 100.0 93.9
GeV−1 b0 −0.201 −0.159 −0.487 0∗

GeV−1 bD −0.005 −0.297 0.127 0∗

GeV−1 bF −0.133 −0.157 −0.188 0∗

GeV−1 b1 +0.122 +0.016 +0.135 0∗

GeV−1 b2 −0.080 −0.151 −0.037 0∗

GeV−1 b3 −0.533 −0.281 −0.494 0∗

GeV−1 b4 +0.028 −0.291 −0.173 0∗

a1 +4.037 +4.188 +2.930 −2.958
a2 −2.063 −3.129 −2.400 −1.479
a5 −1.131 −1.214 −1.225 −1.330
a7 −3.488 −3.000 −2.795 −1.805
a8 −0.347 +0.642 +2.906 −0.655
a9 −1.767 −2.109 −1.913 −1.918

in table 5 the corrections of eq. (3.5) over the Deser for-
mula for Γ are large, around a 40%, see table 6, much
larger than for the fits of table 3. In addition, the fits 20∗,
40∗ and O(p) are also around 3 sigmas below the value of
δπΛ(Ξ) measured in ref. [73]. For the fit 40∗ the disagree-
ment is at the level of 2 sigmas. All this seems to indicate
that the fits of table 3 give a better overall reproduction
of the data on K̄N scattering than those in table 5. Of
course, the hypothetical confirmation of the DEAR data
on the energy shift and width of kaonic hydrogen by the
DEAR/SIDDHARTA Collaboration [2] will certainly re-
fute the fits in table 5.

5 Spectroscopy

In this section we discuss in detail the pole content of our
main fit, the last one in table 3. This fit will be referred
in the following as I. We also present more briefly those
poles corresponding to the 40∗ and O(p) fits of table 5.
The former will be called in the subsequent as II. Those
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Table 6. Fits, given in table 5, that do not agree with the DEAR data, eq. (3.4). The notation is like in table 2.

σπN 20∗ 30∗ 40∗ O(p)
γ 2.34 2.35 2.34 2.32
Rc 0.643 0.643 0.644 0.637
Rn 0.160 0.163 0.176 0.193

∆E (eV) 436 409 450 348
Γ (eV) 614 681 591 611

∆ED (eV) 418 385 436 325
ΓD (eV) 848 880 844 775
aK−p (fm) −1.01 + i 1.03 −0.93 + i 1.07 −1.06 + i 1.02 −0.79 + i 0.94
a0 (fm) −1.75 + i 1.15 −1.65 + i 1.30 −1.79 + i 1.10 −1.50 + i 1.00
a1 (fm) −0.13 + i 0.39 −0.14 + i 0.36 −0.12 + i 0.46 0.32 + i 0.46

δπΛ(Ξ) (◦) −1.4 1.7 −1.2 −1.4
m0 (GeV) 0.8 0.6 0.7 . . .

a+0+ (10−2 ·M−1
π ) −0.5 −1.4 +0.3 . . .

other fits in tables 3 and 5 have a pole content very similar
to that of the considered O(p2) fits, I and II, respectively,
and hence, we will not discuss them separately for the sake
of brevity.

We only consider those Riemann sheets that are con-
nected continuously to the physical sheet in some energy
region of the physical axis. The physical Riemann sheet is
such that the imaginary part of the modulus of the three-
momentum associated with every channel is positive. The
other Riemann sheets are defined depending on which
three-momenta are evaluated in the other sheet of the
square root, with an additional minus sign. The first non-
physical Riemann sheet, 1RS, with Im p1 ≤ 0, is reached
when crossing the physical axis between the thresholds of
πΛ and πΣ, from 1.25 to 1.33GeV, approximately5. The
so-called second sheet, 2RS, with Im p1–4 ≤ 0, is reached
when crossing the physical axis between the thresholds of
πΣ and K̄N , around 1.34 and 1.43GeV, respectively. The
third sheet, 3RS, is connected continuously to the physi-
cal sheet between the thresholds of K̄N and ηΛ, 1.44 and
1.66GeV, approximately, and for this sheet Im p1–6 ≤ 0.
The fourth sheet, 4RS, with Im p1–7 ≤ 0, can be reached
when crossing the physical axis between the ηΛ and ηΣ
thresholds, from around 1.66 to 1.74GeV. The fifth sheet,
5RS, is connected to the physical one between the thresh-
olds of ηΣ and KΞ, around 1.74 and 1.81GeV, respec-
tively, and one has Im p1–8 ≤ 0. And finally, the sixth
sheet, 6RS, with Im p1–10 ≤ 0, is reached by crossing the
physical axis above the KΞ threshold, approximately at
1.81GeV.

Once the pole position is known, one can then calculate
the couplings by performing the limit

Tij = lim
s→sR

− γiγj
s− sR

, (5.1)

with sR the pole position for the s Mandelstam variable.
The γi is the coupling of the pole to the channel ith.

5 In the definition of the sheets we just talk about the K̄N ,
πΣ or KΞ thresholds, although in the physical case, because
of isospin violation, each of these thresholds splits in several
ones over a narrow region, less than 10MeV wide at most. The
indicated Riemann sheets apply below and above this narrow
energy interval.

5.1 Fit I

– I = 0 poles: There are two I = 0 poles very close to
the πΣ threshold, one in the 1RS and the other in
the 2RS sheet. They are located at 1301 − i 13 and
1309 − i 13MeV, for the sheets 1RS and 2RS, respec-
tively. The first pole has a small coupling6 1.12 to πΣ,
while this coupling is large for the second pole, 3.68.
This makes that the bump in the square of the πΣ
I = 0 amplitude is very asymmetric around the πΣ
threshold. On the left of this threshold one has the be-
haviour corresponding to 1RS, so that one observes ba-
sically a cusp effect with very little influence of the 1RS
pole, while at the right of the threshold the behaviour
is dominated by the falling at the right of the 2RS pole.
This is illustrated in the first panel of fig. 6, from left
to right and top to bottom, where the square modulus
of the I = 0 πΣ S-wave is shown. These two poles
reflect the same resonance because they are connected
continuously when passing softly via a continuous pa-
rameter from the 1RS to the 2RS, as we have checked.
For the K̄N channel one has a peak at the 1RS pole po-
sition, although the opening of the πΣ channel makes
a strong cusp effect that distorts strongly the reso-
nance shape giving rise to a sharp dip between the
πΣ thresholds along the right tail of the 2RS pole. On
the 2RS we also have another pole at 1414− i 23MeV,
with large couplings to πΣ (4.24), K̄N (4.87) and KΞ
(9.35). Note that all the ten coupled channels are de-
generate in the SU(3) limit and hence SU(3), simply
because of the Wigner-Eckart theorem, does permit
large couplings of a resonance to much heavier chan-
nels than the resonance mass. This pole, 2RS 1414,
gives rise to the “standard” Λ(1405)-resonance, clearly
seen in the πΣ event distributions of figs. 2, 4 and 5.
Its width resulting from the pole position7 is around
46MeV. Their parameters, mass and width, are then in

6 All couplings will be given in GeV.
7 As it is well known, minus twice the imaginary part of the

pole position is the width of the resonance. Nonetheless, this
is only so when the resonance is narrow and its difference to
the closest threshold is substantially larger than the width.
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Fig. 6. Some poles with I = 0 for the fit I. From left to right and top to bottom, we have the square modulus of the I = 0
S-waves: πΣ, K̄N , KΞ and of KΞ in the isospin limit.

Table 7. Fit I, I = 0 poles. The pole positions are given in MeV and the couplings in GeV. The symbol |γi|I means the coupling
of the corresponding pole to the state with definite isospin I made up by the charged states of the ith channel. The couplings
to the I = 1, 2 channels are always close to zero.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1301 13 1RS
0.03 1.12 0.02 0.01 5.83 0.05 0.41 0.04 2.11 0.03
1309 13 2RS
0.02 3.66 0.02 0.02 4.46 0.04 0.21 0.04 3.05 0.03
1414 23 2RS
0.14 4.24 0.13 0.01 4.87 0.39 0.85 0.20 9.35 0.11
1388 17 3RS
0.02 3.81 0.02 0.02 1.33 0.04 0.42 0.04 9.55 0.04
1676 10 3RS
0.01 1.28 0.03 0.00 1.67 0.01 2.19 0.07 5.29 0.07
1673 18 4RS
0.01 1.26 0.02 0.00 1.82 0.01 2.13 0.06 5.32 0.06
1825 49 5RS
0.02 2.29 0.02 0.00 2.10 0.02 0.89 0.03 7.43 0.09
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good agreement with those of the PDG [61]. The right
most shape of this resonance, above the K̄N thresh-
olds, does not correspond to any pole in the 3RS plane
and just corresponds to a cusp effect due to the open-
ing of the K̄N thresholds. This behaviour is shown in
the second panel of fig. 6, where the square modulus of
the I = 0 K̄N S-wave is plotted. In this panel one can
also observe a narrow pole between the K−p and K̄0n
thresholds corresponding to a narrow I = 1 pole to be
discussed below. This pole appears in I = 0 because of
isospin violation. In the 3RS we find another pole at
1388−i 17MeV that controls, modulo the cusp effect at
the opening of the K̄N thresholds, the size of the πΣ
I = 0 amplitudes. This pole couples much more weakly
to K̄N , and this is why it does not affect its shape in
the physical sheet, see the second panel. These two lat-
ter poles, 2RS 1414 and 3RS 1388, are connected con-
tinuously and, hence, reflect the same resonance, the
Λ(1405). As discussed above, before this resonance we
also have another one, peaked around the πΣ thresh-
old. In ref. [18] the fact of having two nearby poles
around the nominal mass of the Λ(1405) was referred
as the dynamics of the two Λ(1405). In our solution we
still find two resonances, but one of these “Λ(1405)”
has moved to lower energies, and the two peaks can
be distinguished now. We now consider the Λ(1670)-
resonance [61], this is clearly visible in ref. [23] data
on the reaction K−p → ηΛ, as shown in the eighth
panel of figs. 2, 4 and 5. The left part of this reso-
nance, before the opening of the ηΛ threshold, is driven
by the pole in the 3RS at 1676 − i 10MeV, while the
right part, above the ηΛ threshold, is driven by the
pole in the 4RS at 1673− i 13.5MeV. Both poles have
similar values for mass and width although they are
not the same, which is specially relevant in this case
since the width is rather small, around 20MeV, and
because of the nearby position of the ηΛ threshold.
These poles have their largest couplings to the ηΛ and
KΞ channels, around 2.1 and 5.3, respectively. We also
warn that the actual shape of the Λ(1670)-resonance
can depend strongly on the process. For example, for
the square modulus of the K̄N or πΣ elastic I = 0
scattering amplitudes, the peak is shifted to higher
energies, towards 1.7GeV, because of a strong distor-
tion induced in these cases by the ηΛ channel. For this
channel the Λ(1670) appears as a clean strong enhance-
ment. However, its shape is an asymmetric distorted
Breit-Wigner resonance because on the left of the ηΛ
threshold it has a width of around 20MeV, from the
2RS 1676 pole, while on the right its width is larger,
around 26MeV, from the 4RS 1673 pole. The poles
3RS 1676 and 4RS 1673 are connected continuously,
as one would expect. They reflect, as discussed, the
Λ(1670)-resonance. In the 5RS there is another pole
at 1825 − i 49MeV. This pole drives through a few
tens of MeV before the KΞ threshold an increase in
the I = 0 amplitudes involving the πΣ, K̄N and KΞ
I = 0 states to which it couples strongly, 2.3, 2.1 and
7.4, respectively. The coupling to ηΛ is much weaker,

0.9, and it does not give rise to any rapid movement
for this case. This pole disappears in the 6RS, and for
energies higher than the KΞ threshold one only has a
remarkable cusp effect. This is accompanied by an im-
portant decrease in the values of the I = 0 amplitudes
for those to which the previous pole strongly couples.
See the third panel of fig. 6, where the square modu-
lus of the elastic I = 0 KΞ S-wave is shown. In the
PDG [61] there is an entry for the Λ(1800)-resonance
with values for its mass and width in correspondence
with the pole position just given. However, we must
stress that its signal in any scattering amplitude is
far from being that of a simple Breit-Wigner because
it appears just on top of the KΞ threshold (the dis-
tance to that is much smaller than its width of around
100MeV), and this pole appears in one sheet but not
in the next one. E.g., its value for the width as minus
twice the imaginary part of the pole position is not ap-
propriate for this case to the right of theKΞ threshold.
In the last panel of fig. 6 we show the square modu-
lus of the same amplitude as in the third panel but
now, in addition, we also show the physical sheet, indi-
cated by 0RS. It is remarkable how this sheet matches
along the real axis, because of continuity, first to the
5RS and then, after the KΞ threshold, to the 6RS. To
show this more clearly, we have plotted the amplitude
in the isospin limit for this last panel, so that only
one threshold is present. We give in table 7 the pole
positions and couplings of the discussed I = 0 poles.

– I = 1 poles: In the 2RS we find two narrow I = 1
poles close to the K̄N thresholds. One located at
1425−i 6.5MeV and the other at 1468−i 13MeV. The
former has a πΣ coupling of 1.7 while the latter has a
much stronger one of 6.0. They interfere destructively
around 1.42GeV and there is a dip there, as shown in
the first panel of fig. 7, where the square modulus of
the elastic I = 1 πΣ S-wave is plotted. Indeed, this is
the only observable signal in the square of the I = 1
πΣ elastic amplitude for the second pole, because it
disappears in the 3RS. Had the heavier pole not ap-
peared we would then have obtained a symmetric and
standard Breit-Wigner resonance shape for the pole at
1425 − i 6.5MeV. Instead, we find a sharp dip to the
right of the pole position. This remarkable destructive
interference for the πΣ and K̄N I = 1 amplitudes be-
low the K̄N threshold is due to the large couplings of
the pole in the 2RS at 1468 − i 13MeV to πΣ (6.0)
and K̄N (8.7). This effect is not so strong in the πΛ
case because its coupling is smaller, 2.8. The 2RS pole
1425 − i 6.5MeV evolves continuously in the 3RS to
another pole at 1433− i 3.7MeV. This pole drives the
behaviour of the I = 1 amplitudes at the right of the
K̄N threshold. These two poles, being connected, cor-
respond to the same resonance. We see then that the
behaviour of the I = 1 amplitudes from around 1.4 up
to 1.45GeV is dominated by these three poles, giving
rise to a pronounced peak structure in the amplitudes.
Recently, a signal for a resonance at 1480 ± 15MeV
and width of 60 ± 15MeV has been reported from
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Table 8. Fit I, I = 1 poles. The pole positions are given in MeV and the couplings in GeV. The couplings to the I = 0, 2
channels are always close to zero. The notation is like in table 7.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1425 6.5 2RS
1.35 0.24 1.66 0.01 0.35 3.92 0.05 4.23 0.49 2.98
1468 13 2RS
2.80 0.16 5.96 0.02 0.23 8.74 0.04 10.66 0.19 2.48
1433 3.7 3RS
0.65 0.08 0.80 0.00 0.12 1.58 0.02 5.82 0.20 2.14
1720 18 4RS
1.82 0.02 1.21 0.00 0.02 0.95 0.02 6.78 0.05 5.31
1769 96 6RS
2.65 0.00 0.61 0.00 0.00 2.48 0.00 3.32 0.01 4.22
1340 143 3-4RS
1.33 0.14 5.50 0.02 0.02 1.58 0.00 3.28 0.03 1.20
1395 311 3-4RS
2.08 0.01 1.49 0.01 0.00 1.24 0.00 7.63 0.01 3.97
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the reaction pp → K+pY 0∗ in ref. [62]. Maybe, one
can invoke interference effects to account for the dis-
placement of our peak around 1.43GeV to somewhat
higher energies, as observed by COSY. Other relevant
pole for the I = 1 amplitudes is the one located at
1720− i 18MeV on the 4RS. This pole is visible like a
distorted bump in the πΛ (1.82), πΣ (1.21) and K̄N
(0.95) S-waves, however is a clean resonance signal for
the not yet open ηΣ (6.78) and KΞ (5.31) channels. In
the 5RS this pole disappears and one only observes a
ηΣ cusp effect in some channels whose value matches
with the descending tail of the former pole in the
4RS. This enhancement corresponds to the Σ(1750)-
resonance of the PDG, in good agreement with its val-
ues of mass and width. We show this behaviour in the
second panel of fig. 7 by plotting the square modulus
of the πΛ S-wave. In the 6RS sheet we find a rele-
vant pole at 1769 − i 96MeV, with a width of around
200MeV, which is responsible for the size and the slow
descending value of the I = 1 amplitudes after the cusp
around the KΞ thresholds. Hence, this pole cannot be
observed directly as a bump in the physical axis. Re-
garding the Σ(1620) [61], some of the I = 1 S-wave
amplitudes show a broad bump after the K̄N threshold
and before that of the ηΣ. These bumps, like the one
shown in the second panel of fig. 7 for the 5RS surface
of the πΛ elastic amplitude, is due to the interference
of multiple poles. Two of them have been already dis-
cussed, namely, the 3RS 1433 and 4RS 1720 poles. In
addition, there are other two broad poles at 1340−i 143
and 1395−i 311MeV, shown in the last two lines of ta-
ble 8, that appear simultaneously in the 3RS and 4RS
in the same positions8. These poles, because of their
long descending tails, control to a large extent the sizes
of the I = 1 amplitudes in this region. All this pro-
duces this interesting interference phenomenon of soft
bumps on the physical axis as shown also in the panel
before the last one of fig. 7. In this panel the square
modulus of the πΣ elastic I = 1 S-wave is drawn.
For this case, the wider pole is not very relevant, how-
ever, it is so for the ηΣ channel because its coupling
to this channel is much larger than that of the lighter
resonance at 1340MeV. This is why we have kept it.
The pole 1340 − i 143MeV on the 3RS or 4RS sheets
is connected continuously to the previous 2RS pole at
1468− i 13MeV, hence, for this solution, the Σ(1620)
and Σ(1480) are clearly related. In table 8 we collect
the different I = 1 poles for the fit I presented here.

– I = 2 pole: An exotic I = 2 pole appears at
1722 − i 181MeV with a strong coupling to the πΣ
I = 2 channel (the only one possible with I = 2) of
6.18. This pole appears in the 2RS, 3RS, 4RS, 5RS and
6RS, since in all of them the momentum for the πΣ
has reversed sign and the only channel that matters
is the I = 2 πΣ. This pole is actually the responsible
for the I = 2 πΣ size and gives rise to a soft and wide

8 Notice that the ηΛ channel is I = 0 and this is why it does
not appreciably modify the pole positions of these broad I = 1
poles.

bump in the square modulus of the I = 2 amplitude,
with a dip at 1.7GeV due to a zero, see the last panel
of fig. 6, where the square of the modulus of the I = 2
S-wave is shown. Because of this non-uniform shape
and for its rather large magnitude, of the same order
as that for the other isospin πΣ channels, one can
think of the possibility of detecting such exotic state.

5.2 Fits II and O(p)

We consider here the pole content of the fits II and O(p),
both fits are given in table 5. Tables 9 and 10 correspond to
the I = 0, 1 poles of fit II, respectively, while the tables 11
and 12 are the same for the O(p) fit.

For the I = 0 poles of fit II we observe that the Λ(1405)
region is controlled by three poles, two in the 2RS and one
in the 3RS. The first two control the shape before the K̄N
threshold and the latter after this threshold is open. The
2RS 1347 and 3RS 1340 poles couple very strongly to πΣ
while the 2RS 1427 pole couples very strongly to K̄N .
Hence, the resonance looks broader for the πΣ channel
than for the K̄N one, since the resonance for the former
mostly corresponds to the broader and lighter poles while
for the latter it is mainly due to the narrower and heav-
ier one. As a further consequence, for K̄N the resonance
peak is shifted to the right. This kind of behaviour is al-
ready described in detail in ref. [18], where O(p) analyses
were used. In addition, the two poles 2RS 1347 and 3RS
1340 are connected when passing continuously from the
2RS to the 3RS. The Λ(1670)-resonance is described by
the two poles located in the same place both in the 4RS
and 5RS, giving rise to a clean symmetric Breit-Wigner
without asymmetries in the ηΛ threshold. Of course, these
two poles are continuously connected. There is no signal
for the Λ(1800).

We now turn to the I = 1 poles for fit II. The region
below the K̄N threshold is governed by the 2RS poles at
1399 − i 41 and 1424 − i 3.6MeV. The latter appears as
a dip in the slope of the former since the interference is
destructive. Above the K̄N threshold one has again two
poles, one broad and the other narrow, located in the 3RS
at 1311 − i 122 and 1426 − i 3MeV, respectively. In this
case, the latter appears as a clear peak in the slope of the
former. The 2RS 1399 and 3RS 1311 poles are connected
continuously and then correspond to the same resonance.
The same happens for the 2RS 1424 and 3RS 1426 poles,
as one would expect. All these poles give rise to a broad
enhancement of the I = 1 S-waves up to around 1.45GeV.
We do not observe any signal for the Σ(1750). Regarding
the Σ(1620), a few amplitudes, like that of K̄N , exhibits
an enhancement around 1.6GeV. Nonetheless, there is no
a clear pole structure driving this behaviour. The most
remarkable facts are the presence of a broad pole on the
3-4RS at 1311 − i 122MeV, which controls, up to some
extent, the size of the amplitudes in this region through
its falling tail, and the opening of the KΞ channel, that
always produce a pronounced cusp effect, sometimes like
a bump others like a dip. Nonetheless, for fit I there were
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Table 9. Fit II, I = 0 poles. The pole positions are given in MeV and the couplings in GeV. The notation is like in table 7.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1347 36 2RS
0.02 6.48 0.12 0.02 2.60 0.10 1.42 0.01 0.32 0.07
1427 18 2RS
0.12 3.87 0.23 0.01 6.99 0.23 3.49 0.05 1.64 0.32
1340 41 3RS
0.07 5.92 0.08 0.01 0.62 0.08 2.33 0.01 0.75 0.04
1667 8 4RS
0.03 0.77 0.05 0.00 0.59 0.01 3.32 0.02 12.17 0.08
1667 8 5RS
0.03 0.77 0.05 0.00 0.59 0.01 3.32 0.03 12.17 0.06

Table 10. Fit II, I = 1 poles. The pole positions are given in MeV and the couplings in GeV. The notation is like in table 7.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1399 41 2RS
1.49 0.09 5.58 0.01 0.13 4.92 0.08 0.73 0.03 4.99
1424 3.6 2RS
0.54 0.14 1.58 0.00 0.20 1.17 0.10 0.61 0.04 3.76
1311 122 3-4RS
2.63 0.05 4.61 0.01 0.02 3.44 0.02 0.60 0.03 3.60
1426 3 3RS
0.56 0.04 1.18 0.00 0.07 0.77 0.04 0.61 0.02 3.74

Table 11. Fit O(p), I = 0 poles. The pole positions are given in MeV and the couplings in GeV. The notation is like in table 7.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1375 60 2RS
0.04 7.55 0.07 0.02 5.45 0.07 2.20 0.02 0.78 0.07
1429 22 2RS
0.13 4.68 0.14 0.01 6.85 0.21 4.50 0.20 0.54 0.17
1710 19 4RS
0.05 0.27 0.03 0.00 1.73 0.03 2.56 0.05 10.75 0.09
1710 19 5RS
0.04 0.27 0.04 0.00 1.73 0.05 2.56 0.04 10.75 0.11

Table 12. Fit O(p), I = 1 poles. The pole positions are given in MeV and the couplings in GeV. The notation is like in table 7.

Re(Pole) −Im(Pole) Sheet
|γπΛ| |γπΣ |0 |γπΣ |1 |γπΣ |2 |γK̄N |0 |γK̄N |1 |γηΛ| |γηΣ | |γKΞ |0 |γKΞ |1
1423 1.3 2RS
0.52 0.12 0.72 0.00 0.18 1.28 0.11 1.49 0.02 2.30
1494 116 2RS
3.83 0.15 10.06 0.03 0.14 9.25 0.06 2.82 0.02 4.55
1425 4.8 3RS
0.93 0.05 1.22 0.00 0.11 1.63 0.07 2.71 0.01 3.43
1796 69 4RS
3.97 0.01 2.33 0.01 0.02 1.96 0.03 3.20 0.15 9.09
1808 71 5RS
3.71 0.01 1.94 0.00 0.01 2.36 0.02 1.15 0.11 8.16
1350 254 3-4RS
2.38 0.06 5.19 0.01 0.02 3.36 0.01 5.33 0.01 4.11
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more amplitudes manifesting bumps around 1.6GeV than
now for fit II.

We now consider the O(p) fit. The first I = 0 pole
occurs at 1375 − i 60MeV on the 2RS with a large cou-
pling to πΣ. This pole interferes destructively with that
at 1429− i 22MeV and this is why, at this point, the elas-
tic I = 0 πΣ S-wave has a dip. The latter pole couples
very strongly with K̄N and it is seen as a clear maxi-
mum in the K̄N → πΣ partial wave. There is no pole
at around 1.4GeV in the 3RS sheet and the right tail of
this resonance, after the K̄N threshold, corresponds to
a pronounced cusp effect that falls down from the latter
threshold. Thus, for all the fits I, II and O(p) we observe
the presence of a minimum in the I = 0 amplitudes be-
fore 1.42GeV, a maximum for the modulus of the I = 0
πΣ S-wave before such energy (for the fits I, II and O(p)
the maximum is located around 1.34, 1.36 and 1.38GeV,
in order), and a maximum for the amplitudes involving
the K̄N channel around its threshold. As discussed be-
fore, this is related to the so-called dynamics of the two
Λ(1405) [18]. The Λ(1670) region is given by the poles 4RS
and 5RS 1710, which have very similar properties and are
continuously connected when passing from one sheet to
the other. These poles describe this resonance above and
below the ηΣ threshold, respectively. There is no signal
for the Λ(1800).

The narrow I = 1 pole 2RS 1423 only has an appre-
ciable coupling to the KΞ channel, closed at such ener-
gies, and this is why it is so narrow. This pole appears
as a dip in the increasing slope of the wide 2RS 1494
pole. In the 3RS one has another pole at 1424− i 4.8MeV,
continuously connected to the 2RS 1423 one. As in fits I
and II, all these poles give rise to a clear resonance struc-
ture up to around 1.5GeV, close to the nominal mass of
the Σ(1480)-resonance, and overlapping when taking into
account widths [61]. In addition, the enhancement corre-
sponding to the Σ(1750) [61] appears again in this fit,
as in fit I, and it corresponds to the relatively wide 4RS
1796− i 69 and 5RS 1808− i 71MeV poles, in the relevant
sheets for energies below and above the ηΣ threshold, re-
spectively. These two poles are connected continuously.
The Σ(1620) bumps disappear for this fit. Although one
has also here the mentioned resonances around the K̄N
and KΞ thresholds, the amplitudes do not display bumps
between them. One also has in the 3-4RS a wide pole at
1350− i 254MeV that interferes in the physical axis with
the previous resonances but, in this case, this interference
is negative, while in the fit I was positive. This pole is
continuously connected to the 2RS 1494 pole.

Let us perform some SU(3) considerations. Without
moving to the SU(3) limit, we calculate the interaction
kernels, T , appearing in eq. (2.5), for the SU(3) irre-
ducible representation 1, 8s, 8a, 10, 10 and 27. These are
the ones that originate from the tensorial product 8 ⊗ 8
of the octets of baryons and mesons. If one performs such
an exercise, one realizes that for the fit I the 1, 8s, 8a
and 27 have attractive kernels. These representations can
accommodate four I = 0 and three I = 1 resonances,
in agreement with the resonance content discussed above.

For the fit II, one obtains attraction in the representations
1, 8s, 8a and 10. In this case, the previous SU(3) repre-
sentations can accommodate three I = 0 and 1 resonances,
although only two I = 1 resonances finally appear. Simi-
larly, for the O(p) fit one has attractive interaction in the
representations 1, 8s, 8a and 10. As before these represen-
tations can accommodate three I = 0 and 1 resonances.
This is in agreement with the fact that any of the latter
two fits does not reproduce the Λ(1800)-resonance, while
this is the case for the fit I.

We end this section with a general remark. The pres-
ence of poles in the physical Riemann sheet is forbidden
because it violates hermiticity. However, although such
poles could appear in approximate schemes (like ours), if
they are wide enough their contributions on the real en-
ergy axis are soft and small and can be reabsorbed in the
background. Let us make this statement more precise. Be-
cause of the Schwartz reflection principle, fulfilled by any
partial wave, TL(W )∗ = TL(W

∗), the poles always appear
in complex conjugate positions on a given sheet with com-
plex conjugate residua as well. Hence, if one performs a
dispersion relation of a partial wave on the physical sheet,
a pole does not contribute to the imaginary part, only to
the real one, because it adds with its complex conjugate
pole9. Thus, the presence of wide poles on the physical
sheet can be considered as a minor problem of an approx-
imate approach, since their relatively small contributions
can always be removed and substituted by real polynomi-
als of low degree in the dispersion relations for the phys-
ical amplitudes. This is not the case for true resonances,
even wide ones, since they contribute to the imaginary
part of the physical amplitudes, which is an input for the
dispersion relation. For the fits I and II one observes the
presence of two poles on the physical Riemann sheet, with
I = 0 and 1, respectively, but with very large widths of
around 300–400MeV. These widths are much larger than
those shown in tables 7, 8, 9 and 10 for the relevant poles
that drive dominantly the behaviour of the physical ampli-
tudes, as already discussed. Because of this and the argu-
ment just given, these wide resonances could be removed
and replaced by low-degree polynomial backgrounds on
the physical axis, keeping the rest of terms in the disper-
sion relations as given by our present solutions, which also
fix the coefficients for these low-degree polynomials.

6 Conclusions

We have considered a wide set of experimental data that
includes several K−p cross-sections, namely, the elastic
and charge exchange ones and productions of hyperons
(π0Λ, π0Σ0, π−Σ+ and π+Σ−), the πΣ event distribu-
tion from ref. [60], the reaction K−p → π0π0Σ0 from
ref. [24], including a π0Σ0 event distribution and the to-
tal cross-section, the total cross-section ofK−p→ ηΛ [23],

9 For our case we must take a subtractions since our partial
waves goes like constant at infinity. It is enough to take the
subtraction on the real axis so as the previous statement, about
the real character of the pole contributions, is fulfilled.



J.A. Oller: On the strangeness −1 S-wave meson-baryon scattering 81

three ratios γ, Rc and Rn of cross-sections at the threshold
of K−p [58,59], the difference of the P - and S-wave πΛ
phase shifts at the Ξ− mass [73,74], δπΛ(Ξ), and the three
quantities, mp, a

+
0+, σπN , calculated at O(p2) in baryon

CHPT. Last, but not least, we have paid special atten-
tion to the energy shift and width of the α line (2p→ 1s)
of kaonic hydrogen in connection to its recent and accu-
rate measurement by the DEAR Collaboration [1]. We
have reviewed the fits of ref. [21], including as well a new
O(p) fit, and shown that they cannot reproduce the ad-
ditional data considered in sect. 4, that is, those from
K−p→ π0π0Σ0 [24] and from K−p→ ηΛ [23]. These fits
are given in table 1. We have then searched for new fits
including from the beginning all the previous set of data
points. Several fits arise, namely, the O(p2) ones given in
tables 3 and 5, that reproduce most of the data. The only
exceptions are δπΛ(Ξ) and the DEAR data, eq. (3.4), that
are not in agreement (within the present precision given
by their last measurements from refs. [73] and [1], respec-
tively) with the O(p2) fits of table 5. The O(p) fit given in
that table does not reproduce in addition the K−p→ ηΛ
total cross-section. Remarkably, the O(p2) fits of table 3
are able to reproduce the whole set of data and, taking
into account the value for σπN , around 50MeV [68,34],
we consider as our main fit, the so called fit I, the last
one in this table with σπN = 40∗MeV. Nonetheless, all
of them give very similar results for the rest of quanti-
ties, as shown in fig. 4. Indeed, the values of the fitted
free parameters are very similar, as shown in table 3. The
values of the parameters of our main fit are quite similar
to those of the fit A+

4 of ref. [21] as well. This was the
first fit to provide a set of chiral parameters leading to
a simultaneous reproduction of the K−p scattering data
considered in ref. [21] and the DEAR value on the width
and shift of kaonic hydrogen. In addition, we have anal-
ysed in detail the pole content of the fits I (main fit), II
(the 40∗ fit of table 5), and O(p) from table 5. We have
discussed with special care the pole content of fit I and
shown how it reproduces the two Λ(1405) resonances, and
the Λ(1670), Λ(1800), Σ(1480), Σ(1620) and Σ(1750) res-
onances, as called in the PDG. We have shown that there
is no one-to-one correspondence between poles and reso-
nances and that the pole structure of a resonance can in-
deed be very involved, particularly, as it is always the case
here, when there is a threshold in the nearby. One then
must consider in detail the connection between Riemann
sheets, in order to disentangle which poles are responsible
for such effects, and collect as the same resonance those
poles that are connected when passing continuously from
one sheet to the other. Regarding the pole contents of fits
II and O(p), the former does not contain any poles associ-
ated with the Λ(1800) and the Σ(1750) resonances, while
the latter does not reproduce the Λ(1800)-resonance nor
the Σ(1620) bumps. Finally, fit I gives rise to an exotic
broad I = 2 resonance that could be observed since its
size is similar to that of the other πΣ isospin S-waves, its
shape is non-uniform and is the only resonance present in
I = 2. Thus, also from the point of view of spectroscopy,
fit I is the solution that fits better with the present res-

onance content in S-wave strangeness −1 as given in the
PDG [61], giving rise to all the strangeness −1 S-wave res-
onances from the onset of the πΣ channel up to energies
above 1.8GeV. We then conclude that fit I is our preferred
solution in view of its unique agreement with the present
experimental information on scattering, spectroscopy and
kaonic hydrogen.
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